Characterization of the Axiomatizable Prenex Fragments of First-Order Gödel Logics

نویسندگان

  • Matthias Baaz
  • Norbert Preining
  • Richard Zach
چکیده

The prenex fragments of first-order infinite-valued Gödel logics are classified. It is shown that the prenex Gödel logics characterized by finite and by uncountable subsets of [0,1] are axiomatizable, and that the prenex fragments of all countably infinite Gödel logics are not axiomatizable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-order Gödel logics

First-order Gödel logics are a family of infinite-valued logics where the sets of truth values V are closed subsets of [0,1] containing both 0 and 1. Different such sets V in general determine different Gödel logics GV (sets of those formulas which evaluate to 1 in every interpretation into V ). It is shown that GV is axiomatizable iff V is finite, V is uncountable with 0 isolated in V , or eve...

متن کامل

A Resolution Mechanism for Prenex Gödel Logic

First order Gödel logic G∞, enriched with the projection operator 4—in contrast to other important t-norm based fuzzy logics, like Lukasiewicz and Product logic—is well known to be recursively axiomatizable. However, unlike in classical logic, testing (1-)unsatisfiability, i.e., checking whether a formula has no interpretation that assigns the designated truth value 1 to it, cannot be straightf...

متن کامل

On interplay of quantifiers in Gödel-Dummett fuzzy logics

Axiomatization of Gödel-Dummett predicate logics S2G, S3G, and PG, where PG is the weakest logic in which all prenex operations are sound, and the relationships of these logics to logics known from the literature are discussed. Examples of non-prenexable formulas are given for those logics where some prenex operation is not available. Inter-expressibility of quantifiers is explored for each of ...

متن کامل

Herbrand Theorems and Skolemization for Prenex Fuzzy Logics

Approximate Herbrand theorems are established for first-order fuzzy logics based on continuous t-norms, and used to provide proof-theoretic proofs of Skolemization for their Prenex fragments. Decidability and complexity results for particular fragments are obtained as consequences.

متن کامل

Gödel Logics and Cantor-Bendixon Analysis

This paper presents an analysis of Gödel logics with countable truth value sets with respect to the topological and order theoretic structure of the underlying truth value set. Gödel logics have taken an important rôle in various areas of computer science, e.g. logic programming and foundations of parallel computing. As shown in a forthcoming paper all these logics are not recursively axiomatiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003